Synthesis of IH-Cyclobuta[de]naphthalene by Organometallic Methodology

Lau S. Yang, Thomas A. Engler, and Harold Shechter" *Chemistry Department, The Ohio State University, Columbus, Ohio 43210, U.S.A.*

1 H-Cyclobuta *[de]* naphthalene is preparable **by** reactions **of** lf8-dilithionaphtha1ene with dichloromethane and 1,8-bis(iodomagnesio) naphthalene with methylene bis(toluene-p-sulphonate).

1H-Cyclobuta[de]naphthalene (1) and its derivatives are of 1-naphthaldehyde p-tosylhydrazonate;¹ flash-pyrolysis (400—considerable interest,¹⁻⁵ and it has been synthesised by: 800 °C, 10^{-2} — 10^{-4} Torr) of 1- or 2considerable interest,¹⁻⁵ and it has been synthesised by: $800^{\circ}C$, $10^{-2}-10^{-4}$ Torr) of 1- or 2-naphthyldiazomethanes;⁴ reduction (LiAlH₄ or Mg, HCl) of 1-bromo-1H-cyclobuta-
flow-thermolysis (525–650 °C, 0.05–0 reduction (LiAlH₄ or Mg, HCl) of 1-bromo-1*H*-cyclobuta-

[de] naphthalene prepared by photolysis of sodium 8-bromo-

(1- or 2-naphthyl)methyl] trimethylsilanes.⁵ The routes to [delnaphthalene prepared by photolysis of sodium 8-bromo- (1 - **or 2-naphthyl)methyl]trimethylsilanes.5** The routes **to**

compound **(1)** suffer the disadvantages that preparation of the precursors is inefficient and laborious and/or hightemperature, low-pressure gas-phase technology is required. We now report synthesis of (1) from 1,8-dilithionaphthalene⁶ **(2)** and dichloromethane **(3)** and from 1,8-bis(iodomagnesio) naphthalene **(4)⁷** and methylene bis(toluene-p-sulphonate) **(5)**.⁸ The present organometallic reactions, though also of low yield, are practical for synthesis of **(1)** because of the convenience of the reagents, equipment, and experimental techniques. The methodology may also be advantageous for preparation of naphthyl-substituted-1H-cyclobuta $[de]$ naphthalenes and other peri-methanoarenes.

Reaction of (2) and (3) at -78 to 25 °C yields (1) $(3-4\%)$ along with naphthalene **(6)** $(30-37\%)$, acenaphthylene **(7) (1** 3-22 %), *cis-* and trans-l,2-bis(I-naphthy1)ethylenes **(8),** and more complex products. The use of tetramethylethylenediamine (TMEDA) in diethyl ether at lower temperatures leads to an improvement; thus, **(2)** and **(3)** $(2.0-20.0 \text{ equiv.})$
in TMEDA $(2.0-2.3 \text{ equiv.})$ -diethyl ether at -100 to -60 °C give **(1)** $(18-21\%)$ along with **(6)** $(31-42\%)$, **(7)**, **(8),** and 1 -chloromethylnaphthalene **(9a).** Arene **(1)** is separable by vacuum distillation or by gas or column chromatography.

The mechanism by which **(2)** and **(3)** yield **(1)** is also of interest, of relevance to which is the formation of **(6),** a major product apparently produced by diprotonation of **(2).** Further, no deuteriated **(6)** is obtained when the reaction mixture from *(2)* and **(3)** in diethyl ether is quenched with deuterium oxide, thus indicating that **(2)** is totally consumed before work-up. More direct insight comes from reactions of **(2)** with dideuteriodichloromethane (1.2 equiv.) in TMEDA (2.1 equiv.)-diethyl ether at - 60 *"C* to give highly deuteriated **(6)** (38-42% yield, 60-63% **2H2** at C-1 and C-8 and 27-29 % **2H** at C-1) and I, **I-dideuteriocyclobuta[de]naph**thalene **(1)** (15-19% yield, 90% ²H₂ at C-1). The experiments thus indicate that deprotonation of **(3)** by **(2)** to give **(6)** and presumably dichlorolithiomethane **(10)** is a major reaction (equation 1) and suggest that **(12)** is formed (equations 1 and 2) by reaction of **(10)** with **(2)** or/and by collapse of **(10)** to monochlorocarbene **(11)** which is then captured by **(2).** Loss of lithium chloride and ring-closure of **(12)** would give **(13)** and then **(1)** by proton-transfer from the remaining **(3).** Generation of the carbenoid (4.1 equiv.) from **(3)** and t-butyl-lithium in diethyl ether at -100 °C foilowed by slow addition of **(2)** (1.0 equiv.) in **TMEDA** (2.2 equiv.)-diethyl ether at -100° C and warming the mixture does give **(1)** (18%) along with **(6)** $(25-35\%)$ in agreement with equations (1) and (2). It has not yet been possible, however, to control the reaction of discrete **(10)** and/or **(11)** with **(2)** to improve the conversion into **(l).?**

Alternative routes to **(1)** might involve 1 -chloromethyl-8 lithionaphthalene **(14),** derived from reaction of **(3)** and **(2)** in equation (3). The behaviour of discrete **(14)** was determined under the conditions for the conversion of **(2)** by **(3)** into **(1).** Addition of t-butyl-lithium (2 equiv.) to 8-bromo-1-chloro-
methylnaphthalene in diethyl ether at -100 °C gives (14) as shown by its conversion *(>55%)* by MeOD into l-chloromethylnaphthalene **(9b)** containing >85 % deuterium at C-8. Warming the mixture from 8-bromo-1 -chloromethylnaphthalene and t-butyl-lithium to 25 "C however does not yield (1) ; only 1-neopentylnaphthalene (15) (6%) , 1,2-di(1-naphthyl)ethane (16) (46%) , and more complex coupling products are formed. Similar results are obtained from **(14)** and TMEDAdiethyl ether, and thus **(14)** is not involved in the present route to **(1)** from **(2)** and **(3).**

The utility of organometallic analogues of **(2)** for synthesis of **(1)** is also being investigated. Addition of alkynylcopper

t **A** major reaction of **(10)** under these conditions is conversion of the generation of (10) and (11) from (2) and (3) is in progress.

reagents, copper-(I) or -(II) halides, or iron(III) chloride to **(2)** and then reaction with dichloro, dibromo- or di-iodomethane, respectively, in diethyl ether, tetrahydrofuran, or hexamethylphosphoric triamide at -78 to 25 °C fail to give **(1).** Similarly, the dihalogenomethanes and **(4),** as prepared from $1, 8$ -di-iodonaphthalene and magnesium $(4-8)$ equiv.) in tetrahydrofuran, do not yield **(1). Of** interest however is that **(4)** and **(5)** give **(1)** (20%) , **(6)**, (30%) , and coupling products in refluxing tetrahydrofuran (48 h). The efficiency of this method for preparing **(1)** is comparable with that based on **(2)** and **(3)** in TMEDA-diethyl ether. The mechanism by which *(5)* is converted into **(1)** by **(4)** is not yet known however.

We thank the National Science Foundation for support of this research.

Received, 2nd February 1983; Corn. 165

References

- ¹R. J. Bailey and H. Shechter, J. *Am. Chem. SOC.,* **1974,** *96,* **81 16.**
- **2 M.** Gessner, **P.** Card, H. Shechter, and *G.* Christoph, J. *Am. Chem. SOC.,* **1977,** *99,* **2371.**
- **³**0. L. Chapman, *Pure Appl. Chem.,* **1979, 51, 331.**
- **4 J.** Becker and C. Wentrup, J. *Chem. SOC., Chem. Commun.,* **1980, 180.**
- *5* T. **A.** Engler and *H.* Shechter, *Tetrahedron Lett.,* **1982, 2715.**
- *⁶*R. L. Letsinger, J. **A.** Gilpin, and W. J. Viello, J. *Org. Chem.,* **1962, 27, 672.**
- **⁷**R. L. Clough, P. Mison, and J. D. Roberts, J. *Org. Chem.,* **1978, 41, 2252;** R. **D.** Rieke and **S. E.** Bales, *J. Chem. SOC., Chem. Commun.,* **1973, 879.**
- **8** W. D. Emmons and **A.** F. Ferris, *J. Am. Chem. SOC.,* **1977, 99, 2371.**
- **⁹**G. **L.** Closs and **L.** *E.* Closs, J. *Am. Chem. SOC.,* **1960, 82, 5723;** G. Kobrich, K. Flory, and N. Drischel, *Angew. Chem., Int. Ed. Engl.,* **1964, 3, 513.**
- 10 G. Kobrich and H. R. Merkle, *Chem. Ber.,* **1966,** *99,* **1782.**